查看更多相关内容
取消关注骨肿瘤是导致20岁以下的癌症患者死亡的第三大原因。根据2020年公布的世界卫生组织第五次骨肿瘤分类,骨肿瘤被分为良性、中间型或恶性。不同类型的骨肿瘤有不同的生物学行为。良性肿瘤通常比较稳定,通常决定采用刮除术或只要求随访或局部刮除。中间型肿瘤会有局部侵袭性,通常会选择更激进的治疗方法来防止复发。恶性肿瘤由于具有侵袭性生物学行为和远处转移的概率,因此需要综合治疗(如手术、化疗和放疗)。因此,骨肿瘤的鉴别诊断对临床决策至关重要。
基于数据驱动的机器学习和深度学习(DL)技术已被广泛研究,现阶段已用于临床的多个领域。由于骨肿瘤的发病率相对较低,十分缺乏关于DL应用于骨肿瘤的相关研究。此外,关于平片上的骨肿瘤的DL研究更少。
近日,发表在European Radiology杂志的一项研究评估了DL在鉴别良性、恶性和中间型骨肿瘤方面的能力,并将DL与放射科医生的诊断水平进行了比较,为临床快速准确的评估骨肿瘤提供了技术支持。
本项回顾性研究收集了2012年至2019年间经病理确诊的骨肿瘤的数据。构建了深度学习和机器学习融合模型,利用病变的常规X线片和潜在的相关临床数据将肿瘤分类为良性、恶性或中间型。比较了五位放射科医生使用和不使用该模型的诊断性能。使用曲线下面积(AUC)来评估诊断性能。
共有643名患者(中位年龄,21岁;四分位数范围,12-38岁;244名女性)的982张X线片被纳入最终评估。在测试组中,二元类别分类任务中,良性/非良性、恶性/非恶性和中度/非中度的放射学分类模型的AUC分别为0.846、0.827和0.820;融合模型的AUC分别为0.898、0.894和0.865。在三类分类任务中,放射学模型的宏观平均AUC为0.813,而融合模型的宏观平均AUC为0.872。在观察测试中,所有放射科医生的平均宏观平均AUC为0.819。在三类分类融合模型的支持下,宏观AUC提高了0.026。
本研究开发了一个融合了放射学和临床信息的模型用以良性、中间型和恶性肿瘤的鉴别。事实证明,与放射科医生相比,该模型在鉴别诊断方面十分有潜力。该模型可以帮协助临床进行患者的早期风险评估,并指导患者进行个性化治疗。
原文出处:
Renyi Liu,Derun Pan,Yuan Xu,et al.A deep learning-machine learning fusion approach for the classification of benign, malignant, and intermediate bone tumors.DOI:10.1007/s00330-021-08195-z
主治医师
杭州肿瘤医院 中医肿瘤科
主任医师
中国中医科学院广安门医院 肿瘤科
主任医师
成都肿瘤专科医院 中医肿瘤科
副主任医师
天津市肿瘤医院 乳腺肿瘤科
主任医师
北京大学肿瘤医院 中西医结合科暨老年肿瘤科
二级甲等 综合医院 公立
沈阳市苏家屯区林盛堡镇
三级甲等 综合医院 公立
安徽省铜陵市铜官山区笔架山路468号
二级甲等 康复院 公立
柳州市
二级甲等 综合医院 公立
广州市黄埔区黄埔东路2957号志诚楼
三级 妇幼保健院 公立
襄城区:湖北省襄阳市檀溪路35号;樊城区:湖北省襄阳市春园路12号
三级甲等 综合医院 公立
河南省郑州市金水区经八路2号