肺癌治疗
快速导航
频道
女性
减肥
育儿
保健
美容
妇科
饮食
中医
肿瘤
资讯
男性
诊疗
呼吸科
心血管
肝病科
更多
服务
问医生
就医助手
药品通
疾病百科
名医在线
简单生活
热门疾病
高血压
阴道炎
肩周炎
脂肪肝
小儿咳嗽
糖尿病
健康科普
科普基地
关注39减肥健康运动

查看更多相关内容

取消关注
首页 > 癌症 > 肺癌治疗

Nat Commun:深度学习模型预测肺癌筛查中低剂量计算机断层扫描的心血管疾病风险

举报/反馈
2021-05-31 06:55:40梅斯医学

心血管疾病(CVD)影响了近一半的美国成年人,并造成超过30%的死亡人数。CVD风险的预测是管理患者健康临床实践的基础。最近的研究显示,被诊断出患有癌症的患者的CVD死亡风险是普通人群的十倍。

既往研究显示,用于肺癌筛查的低剂量计算机断层扫描(LDCT)已被证实在临床试验中有效。在国家肺部筛查试验(NLST)中,共有356名接受LDCT的参与者在6年随访期内死于肺癌。然而,更多的患者(其他486人)则死于CVD。

因此,在接受LDCT筛查的高危受试者中筛查CVD等重大合并症对于降低患者总体的死亡率至关重要。然而,当癌症风险人群在接受癌症筛查时,其潜在的CVD风险可能会被忽略。

在该研究中,深度学习CVD风险预测模型接受了来自美国国家肺癌筛查试验的30286例LDCT数据的训练,通过模型分析2,085名受试者的单独测试集,获得了0.871的曲线下面积(AUC),并确定了具有较高CVD死亡率风险的患者(AUC为0.768)。

研究人员通过分析包括来自335名受试者的独立数据集,针对基于ECG门控的心脏CT标记物,包括冠状动脉钙化(CAC)评分、CAD-RADS评分以及MESA 10年风险评分,进一步的验证了上述深度学习模型。

综上,该研究结果表明,在高风险患者中,深度学习模型可将用于肺癌筛查的LDCT数据转换为用于CVD风险评估的双重筛查定量工具。

原始出处:

Chao, H., Shan, H., Homayounieh, F. et al. Deep learning predicts cardiovascular disease risks from lung cancer screening low dose computed tomography. Nat Commun 12, 2963 (20 May 2021).

39健康网专业医疗保健信息平台 优质健康资讯门户网站  
快速通道
相关推荐39精品39热文
自测
查看全部
推荐专家
查看更多
推荐医院
查看更多
健康资讯热门资讯